elisapeyron: (Дневник)
[personal profile] elisapeyron
Всім привіт!

Світлина від Julia Rudenko.

Я створила подію у ФБ де писатиму про всі наші плани стосовно вимірюванню планети Земля. Підписуйтеся і долучайтеся.

Для того, щоб все було серйозно (а то тут дехто скептично налаштований) я сконтактувала з Світланою Герасіменко науковим співробітником відділу фізики космічної плазми Головної астрономiчної обсерваторiї Нацiональної академії наук України, кандидатом фізико-математичних наук. Вона крім усього цього читає лекції в Київському планетарії і веде там Астрошколу для дітей 5-14 років, яку мій Яркий і відвідував майже 5 років.

Так що все буде по-справжньому! =)

Слідкуйте за оновленнями у ФБ, а поки що я наводжу уривок зі статті в "Кванті" про вимірюванню Землі. Саму статтю дуже раджу прочитати, вона чудова.
Геометрия звездного неба


Как измерили земной шар

То, что Земля не плоская, люди знали давно. Древние мореплаватели наблюдали, как постепенно меняется картина звездного неба: становятся видны новые созвездия, а другие, напротив, заходят за горизонт. Уплывающие вдаль корабли «уходят под воду», последними скрываются из вида верхушки их мачт. Кто первый высказал идею о шарообразности Земли, неизвестно. Скорее всего — пифагорейцы, считавшие шар совершеннейшей из фигур. Полтора века спустя Аристотель приводит несколько доказательств того, что Земля — шар. Главное из них: во время лунного затмения на поверхности Луны отчетливо видна тень от Земли, и эта тень круглая! С тех пор постоянно предпринимались попытки измерить радиус земного шара. Два простых способа изложены в упражнениях 1 и 2. Измерения, правда, получались неточными. Аристотель, например, ошибся более чем в полтора раза. Считается, что первым, кому удалось сделать это с высокой точностью, был греческий математик Эратосфен Киренский (276–194 до н. э.). Его имя теперь всем известно благодаря решету Эратосфена — способу находить простые числа (рис. 1).

Рис. 1. Изображение: «Квант»

Если вычеркнуть из натурального ряда единицу, затем вычеркивать все четные числа, кроме первого (самого числа 2), затем все числа, кратные трем, кроме первого из них (числа 3), и т. д., то в результате останутся одни простые числа. Среди современников Эратосфен был знаменит как крупнейший ученый-энциклопедист, занимавшийся не только математикой, но и географией, картографией и астрономией. Он долгое время возглавлял Александрийскую библиотеку — центр мировой науки того времени. Работая над составлением первого атласа Земли (речь, конечно, шла об известной к тому времени ее части), он задумал провести точное измерение земного шара. Идея была такова. В Александрии все знали, что на юге, в городе Сиена (современный Асуан), один день в году, в полдень, Солнце достигает зенита. Исчезает тень от вертикального шеста, на несколько минут освещается дно колодца. Происходит это в день летнего солнцестояния, 22 июня — день наивысшего положения Солнца на небе. Эратосфен направляет своих помощников в Сиену, и те устанавливают, что ровно в полдень (по солнечным часам) Солнце находится точно в зените. Одновременно (как написано в первоисточнике: «в тот же час»), т. е. в полдень по солнечным часам, Эратосфен измеряет длину тени от вертикального шеста в Александрии. Получился треугольник ABC (АС — шест, АВ — тень, рис. 2).

Рис. 2. Изображение: «Квант»

Итак, солнечный луч в Сиене (N) перпендикулярен поверхности Земли, а значит, проходит через ее центр — точку Z. Параллельный ему луч в Александрии (А) составляет угол γ = ACB с вертикалью. Пользуясь равенством накрест лежащих углов при параллельных, заключаем, что AZN = γ. Если обозначить через l длину окружности, а через х длину ее дуги AN, то получаем пропорцию . Угол γ в треугольнике АВС Эратосфен измерил, получилось 7,2°. Величина х — не что иное, как длина пути от Александрии до Сиены, примерно 800 км. Ее Эратосфен аккуратно вычисляет, исходя из среднего времени движения верблюжьих караванов, регулярно ходивших между двумя городами, а также используя данные бематистов — людей специальной профессии, измерявших расстояния шагами. Теперь осталось решить пропорцию , получив длину окружности (т. е. длину земного меридиана) l = 40000 км. Тогда радиус Земли R равен l/(2π), это примерно 6400 км. То, что длина земного меридиана выражается столь круглым числом в 40000 км, не удивительно, если вспомнить, что единица длины в 1 метр и была введена (во Франции в конце XVIII века) как одна сорокамиллионная часть окружности Земли (по определению!). Эратосфен, конечно, использовал другую единицу измерения — стадий (около 200 м). Стадиев было несколько: египетский, греческий, вавилонский, и каким из них пользовался Эратосфен — неизвестно. Поэтому трудно судить наверняка о точности его измерения. Кроме того, неизбежная ошибка возникала в силу географического положения двух городов. Эратосфен рассуждал так: если города находятся на одном меридиане (т. е. Александрия расположена в точности к северу от Сиены), то полдень в них наступает одновременно. Поэтому, сделав измерения во время наивысшего положения Солнца в каждом городе, мы должны получить правильный результат. Но на самом деле Александрия и Сиена — далеко не на одном меридиане. Сейчас в этом легко убедиться, взглянув на карту, но у Эратосфена такой возможности не было, он как раз и работал над составлением первых карт. Поэтому его метод (абсолютно верный!) привел к ошибке в определении радиуса Земли. Тем не менее, многие исследователи уверены, что точность измерения Эратосфена была высока и что он ошибся менее чем на 2%. Улучшить этот результат человечество смогло только через 2 тысячи лет, в середине XIX века. Над этим трудилась группа ученых во Франции и экспедиция В. Я. Струве в России. Даже в эпоху великих географических открытий, в XVI веке, люди не смогли достичь результата Эратосфена и пользовались неверным значением длины земной окружности в 37000 км. Ни Колумб, ни Магеллан не знали, каковы истинные размеры Земли и какие расстояния им придется преодолевать. Они-то считали, что длина экватора на 3 тысячи км меньше, чем на самом деле. Знали бы — может, и не поплыли бы.

В чем причина столь высокой точности метода Эратосфена (конечно, если он пользовался нужным стадием)? До него измерения были локальными, на расстояниях, обозримых человеческим глазом, т. е. не более 100 км. Таковы, например, способы в упражнениях 1 и 2. При этом неизбежны ошибки из-за рельефа местности, атмосферных явлений и т. д. Чтобы добиться большей точности, нужно проводить измерения глобально, на расстояниях, сравнимых с радиусом Земли. Расстояние в 800 км между Александрией и Сиеной оказалось вполне достаточным.

Упражнения
1. Как вычислить радиус Земли по следующим данным: с горы высотой 500 м просматриваются окрестности на расстоянии 80 км?
2. Как вычислить радиус Земли по следующим данным: корабль высотой 20 м, отплыв от берега на 16 км, полностью исчезает из вида?
3. Два друга — один в Москве, другой — в Туле, берут по метровому шесту и ставят их вертикально. В момент, в течение дня, когда тень от шеста достигает наименьшей длины, каждый из них измеряет длину тени. В Москве получилось а см, а в Туле — b см. Выразите радиус Земли через а и b. Города расположены на одном меридиане на расстоянии 185 км.

Как видно из упражнения 3, опыт Эратосфена можно проделать и в наших широтах, где Солнце никогда не бывает в зените. Правда, для этого нужны две точки обязательно на одном меридиане. Если же повторить опыт Эратосфена для Александрии и Сиены, и при этом сделать измерения в этих городах одновременно (сейчас для этого есть технические возможности), то мы получим верный ответ, при этом будет не важно, на каком меридиане находится Сиена (почему?).

From:
Anonymous( )Anonymous This account has disabled anonymous posting.
OpenID( )OpenID You can comment on this post while signed in with an account from many other sites, once you have confirmed your email address. Sign in using OpenID.
User
Account name:
Password:
If you don't have an account you can create one now.
Subject:
HTML doesn't work in the subject.

Message:

 
Notice: This account is set to log the IP addresses of everyone who comments.
Links will be displayed as unclickable URLs to help prevent spam.

April 2017

S M T W T F S
      1
2 345678
9101112131415
16171819202122
23242526272829
30      

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Sep. 21st, 2017 03:56 pm
Powered by Dreamwidth Studios